The Light Airplane Pilot’s Guide to

Stall/Spin Awareness

Featuring the PARE® Spin Recovery Checklist

Foreword by James M. Patton, Jr.
Chief of Flight Operations, NASA Langley (retired)

Rich Stowell
Master Flight Instructor

First Edition

Rich Stowell Consulting, Ventura, California
Table of Contents

List of Figures, Photos, & Tables .. xiii

Foreword .. xvii

Acknowledgments .. xviii

Disclaimer .. xxi

Twelve Stall/Spin Myths Exposed .. 1

1. Scope of The Stall/Spin Problem .. 7

PART ONE—HISTORICAL PERSPECTIVE

2. Overview .. 15
 - The First Quarter-Century .. 15
 - The Second Quarter-Century .. 21
 - The Third Quarter-Century .. 26
 - The Fourth Quarter-Century ... 28

3. Airplane Certification .. 33
 - Requirements of the 1930s & 1940s .. 33
 - Requirements of the 1950s & 1960s .. 37
 - Requirements of the 1970s & 1980s .. 40
 - Requirements of the 1990s & Later .. 42

4. Aeronautical Knowledge ... 49
 - Private and Commercial Pilot Applicants 49
 - Flight Instructor Applicants .. 53

PART TWO—ACCIDENT STATISTICS

5. Stall/Spin Accidents ... 57
 - Accident Prevention .. 60

6. Inside The Numbers ... 65
 - The Role of the Airplane .. 70
 - The Role of the Pilot ... 75
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Who’s Spinning In</td>
<td>79</td>
</tr>
<tr>
<td>Flight Instructors</td>
<td>80</td>
</tr>
<tr>
<td>CFIIs and Aerobatics</td>
<td>82</td>
</tr>
<tr>
<td>The Veillette Study</td>
<td>83</td>
</tr>
<tr>
<td>The Carpenter Study</td>
<td>85</td>
</tr>
<tr>
<td>Airline Transport Pilots</td>
<td>86</td>
</tr>
<tr>
<td>A Missed Opportunity</td>
<td>87</td>
</tr>
<tr>
<td>PART THREE—EXPLORING THE SPIN ENVELOPE</td>
<td></td>
</tr>
<tr>
<td>8. Results of Spin Research</td>
<td>93</td>
</tr>
<tr>
<td>Mathematical Modeling</td>
<td>95</td>
</tr>
<tr>
<td>Scale Models</td>
<td>98</td>
</tr>
<tr>
<td>Full-Scale Incipient Spin Programs</td>
<td>101</td>
</tr>
<tr>
<td>Beech Model 77 Skipper Spin Program</td>
<td>105</td>
</tr>
<tr>
<td>de Havilland DHC-1 Chipmunk Spin Program</td>
<td>106</td>
</tr>
<tr>
<td>NASA’s General Aviation Stall/Spin Program</td>
<td>108</td>
</tr>
<tr>
<td>Additional Conclusions from Spin Research</td>
<td>119</td>
</tr>
<tr>
<td>9. Spin Physiology & Human Factors</td>
<td>123</td>
</tr>
<tr>
<td>Channelization</td>
<td>123</td>
</tr>
<tr>
<td>Fear, Stress, & the Survival Instinct</td>
<td>125</td>
</tr>
<tr>
<td>Quantifying Stress during Spins</td>
<td>128</td>
</tr>
<tr>
<td>The Student-Instructor Dynamic</td>
<td>129</td>
</tr>
<tr>
<td>Critical Skills</td>
<td>130</td>
</tr>
<tr>
<td>Controlling the Physical Reactions</td>
<td>131</td>
</tr>
<tr>
<td>Time Compression/Expansion</td>
<td>132</td>
</tr>
<tr>
<td>Spatial Disorientation</td>
<td>133</td>
</tr>
<tr>
<td>About Our Eyes</td>
<td>135</td>
</tr>
<tr>
<td>The Inverted Spin Environment</td>
<td>137</td>
</tr>
<tr>
<td>Emergency Egress during Spins</td>
<td>139</td>
</tr>
<tr>
<td>Pilot Perceptions & Errant Inputs</td>
<td>142</td>
</tr>
<tr>
<td>10. Spin Test Requirements & Practicalities</td>
<td>145</td>
</tr>
<tr>
<td>Small Airplane Directorate</td>
<td>145</td>
</tr>
<tr>
<td>The Regulations & Guidelines</td>
<td>146</td>
</tr>
<tr>
<td>The Test Pilots</td>
<td>149</td>
</tr>
<tr>
<td>Survey Results</td>
<td>151</td>
</tr>
<tr>
<td>The Airplane Manufacturers</td>
<td>159</td>
</tr>
<tr>
<td>Key Points for Pilots</td>
<td>159</td>
</tr>
</tbody>
</table>
11. In the Cockpit with a Career Test Pilot
 Jim Patton, The Making of a Spin Test Pilot
 The NASA Years
 Flat Spinning the Yankee
 Spinning Acrobatic Category Airplanes
 Canards and Deep Stalls
 Full Circle

PART FOUR—STALL/SPIN AWARENESS GROUND SCHOOL

12. Definitions
 General Terminology
 Stall Terminology
 Spin Terminology
 Spin Phases & Spin Modes
 An Assortment of Aggravated Spins
 Some Aggravated Spins that Tumble
 Spin Recovery Actions

13. Stall Dynamics
 Flying the V-g Diagram
 Stall Speed vs. C.G.
 Planform Effects
 Power, Aileron, & Flap Effects
 Approach-To-Landing Stall
 Departure Stall
 Under-The-Bottom Stall
 Over-The-Top Stall
 Prolonged Stall
 Deep Stall
 Tail Stall

14. Spin Dynamics
 Several Sources of Yaw
 Spin Phases
 Airplane Design Variables
 Pilot-Controlled Variables
 Quantifying Normal Spin Behavior
15. Expert Advice ... 247
The Primary Controls ... 248
Coping with Flat Spins ... 251
Reverting to the Normal Spin Configuration 254
Timing is Everything ... 255
The Beggs Method ... 260
Last Ditch Strategies for Really Bad Spins 261
A Look at Inverted Spins ... 263
Conclusion ... 263

PART FIVE—ENHANCED AWARENESS

16. Procedure, Technique, & PARE® ... 269
Applying Recovery Elevator ... 270
Using the PARE® Checklist ... 273
The Checklist as a Teaching Tool ... 275
Why It Matters ... 280

17. The Truth About Manufacturer-Supplied Info 285
Case Study—Cessna 150 Series ... 287
Case Study—Piper PA-28-140 .. 292
Case Study—Cessna 185 Series .. 295
Case Study—Piper PA-28-180 .. 297
Case Study—American Champion/Bellanca 8KCAB ... 300
Case Study—Beechcraft ... 303
Case Study—Mooney M-20 Series 306
Case Study—Christen Eagle II ... 307
A Word About Supplemental Type Certificates 308
The Flow of Information ... 309

18. Spin Resistance & MOLEs; Columbia & Cirrus 311
Defining Spin Resistance ... 313
The Columbia 300 .. 314
The Cirrus SR20 ... 316
The Columbia 400 .. 323
Summary ... 328
PART SIX—THE SPIN TRAINING DEBATE

20. The Stall Avoidance Myth ... 359
 Why Stall Avoidance is Ineffective 361
 Angle of Attack Awareness .. 364

21. The FAA’s Stall Awareness Study ... 369
 The Training Increments .. 371
 The Flight Evaluation .. 372
 The Results ... 374
 Realistic Distractions .. 376
 Stall and Spin Awareness Training 377
 The Veillette Study Revisited .. 378
 A Ray of Hope—The Carpenter Study Revisited 379

22. Addressing The Core Issues .. 381
 A Consensus ... 381
 What is “Spin Training”? ... 385
 But is Spin Training Beneficial? 388
 But is Spin Training Safe? ... 392
 Diverging Philosophies .. 395
 Is Re-Instituting Mandatory Spin Training Feasible? 399

23. Taking Charge of Your Education 401
 Assessing Stall/Spin Experience 404
 Assessing the Airplane’s Suitability 405
 Risk Management ... 407
 The Next Step—Tame The Basic Stall 410
APPENDIXES

Appendix A—Published Spin Recovery Information 417
Appendix B—Piper PA-38-112 Tomahawk............................... 435
Appendix C—Light Twins .. 445
Appendix D—For More Information .. 451
Appendix E—EMT® Program Syllabus 453
Appendix F—Advisory Circular 61-67C 457

Bibliography .. 471
Index .. 485
Other Rich Stowell Products .. 498
FIGURES

Figure 2-1: Typical General Aviation TDPF Criterion .. 25
Figure 5-1: Elements Feeding the Accident Process .. 58
Figure 8-1: Effect of Wing Fillet Shape Alone on Model Spin Behavior 100
Figure 9-1: The Two Pathways to Fear in the Brain .. 126
Figure 9-2: Parts of the Brain .. 127
Figure 9-3: Schematic of Eye-Ear Pathways .. 135
Figure 10-1: Flow of Information from FAA to Pilots .. 146
Figure 12-1: Lift Curves for Both Sides of Representative Airfoils 182
Figure 13-1: Representative Graph of Cl & Cd vs. AOA ... 200
Figure 13-2: Effect of Flaps on Cl .. 200
Figure 13-3: The Three Alternatives to Stalled Flight ... 202
Figure 13-4: Information Depicted on the V-g Diagram ... 207
Figure 13-5: Maneuvering within the V-g Envelope ... 209
Figure 13-6: The Stall as “Relief Valve” in Turbulent Conditions 212
Figure 13-7: Idealized Wing Stall Patterns .. 216
Figure 14-1: Effects of Left Yaw Input during Normal Flight 228
Figure 14-2: Effects of Left Yaw Input during Stalled Flight 229
Figure 14-3: Pro-Spin Gyroscopic Effect due to Rolling Wings 236
Figure 14-4: Pro-Spin Gyroscopic Effect due to Pitching Fuselage 237
Figure 14-5: Shielding Effects due to the Horizontal Stabilizer 238
Figure 19-1: Typical Stall Margin in Cruise Flight ... 333
Figure 19-2: Stall Margin in Knife-Edge Flight .. 335
Figure 19-3: Stall Margin when Skidding ... 340
Figure 20-1: The “C” Pattern ... 362
Figure 23-1: Piper Cherokee 140 Operating Envelope .. 407
TABLES

Table 1-1: Estimated Number of General Aviation Aircraft in 2002 11
Table 3-1: Conditions under which Intentional Spins are Approved 33
Table 3-2: Simplified Small Airplane Spin Test Matrix 46
Table 3-3: Summary of Spin Test Requirements over Time 48
Table 6-1: Top Five Fatal Aircraft Accident Causes in the U.S., 1982–1988 ... 68
Table 6-2: Breakdown of Fatal Stall/Spin Accidents by Phase of Flight 70
Table 6-3: Fixed Wing Pilot Error Mishaps—New Zealand, 1983–1988 76
Table 6-4: Breakdown of Decision Errors—New Zealand, 1983–1991 77
Table 7-1: Distribution of Accidents Among Pilot Groups, 1993–2001 79
Table 8-1: Pitching- and Yawing-Moment Equations of Motion 96
Table 8-2: IYMP Values for Airplanes Discussed Later in this Chapter 98
Table 8-3: Example of Effect of Ailerons on AA-1X Spin Behavior 111
Table 8-4: Spin Entry Rates—Normal Entry, Unmodified Configs 118
Table 8-5: Effect of c.g. on Spin Entry Success Rates—NASA C-172X 118
Table 9-1: Spin Accidents and Emergency Egress 141
Table 10-1: Typical Spin Test Matrix ... 150
Table 12-1: NASA Spin Mode Classifications ... 192
Table 13-1: Maneuvering Speeds for Some Representative Airplanes 205
Table 13-2: Calibrated Stall Speed versus Bank Angle 206
Table 14-1: Spins-Approved Airplanes as Tested 245
Table 16-1: Pro- and Anti-Spin Elements, Upright Spins 269
Table 16-2: Determining Opposite Rudder from Available Cues 279
Table 18-1: Comparison of Spin Entry Success Rates 312
Table 18-2: FAA Analysis—Traditional Spin Recovery vs. GARD 318
Table 18-3: Comparison of Columbia 400 Control Throw 327
Table 19-1: Differences between the Upright Spiral, Stall, & Spin 345
Table 19-2: Success Rates in the Simulator-based Turnaround Study 349
Table 19-3: Pros and Cons of Various Turnaround Strategies 351
Table 19-4: Breakdown of Successful Turns in the Turnaround Study 352
Table 22-1: Expert Witness Positions on Spin Training, 1980 382
Table 22-2: The Bagby Study—Instructor Demographics 384
Table 22-3: Periodic Spin Training Accidents in the Air Force T-37 398
Table 23-1: Stall/Spin Awareness Instructor Qualification Test 413
Table B-1: Comparative Specifications—Tomahawk vs. Skipper 442